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These are lecture notes for a summer 2020 mini course on Malliavin Calculus. First, we
will review stochastic integration, and introduce the basic operators of Malliavin calculus.
We will then take a detour to study some basic SDE theory, and see the connection between
SDEs and the Cauchy problem. Finally, we will explain how Malliavin calculus can be
applied to give a probabilistic proof of Hörmander’s Theorem. Sections 2 and 4 of the notes
borrow heavily from the book Introduction to Malliavin Calculus by David Nualart, and
much of Section 5 on Hörmander’s Theorem I learned from an expository paper by Martin
Hairer, titled On Malliavin’s Proof of Hörmander’s Theorem.
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5 Hörmander’s Theorem 17
5.1 Statement of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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1 Probabilistic Setup

Let (Ω,F ,P) be a probability space, and X : Ω → R a random variable. We would like to
talk about the “derivative” of X, but this is hopeless without some more analytical structure
on Ω. Luckily, many random variables of interest are defined as functionals of some Brownian
motion, in which case we might as well take (Ω,F ,P) to be the Wiener space.

1.1 Wiener Space

Definition 1.1. The Wiener space is the probability space (Ω,F ,P) where Ω = C(R+;R),
F is the Borel σ-algebra there, and P is the unique measure such that the process Bt(ω) =
ω(t) is a Brownian Motion.

The Wiener space also comes with a natural choice of filtration, namely the augmentation
of the natural filtration of B. More precisely, we take F = (Ft)t≥0, where

Ft = σ({Bs : s ≤ t} ∨ {A ∈ F : P[A] = 0}). (1)

For the rest of these notes, (Ω,F ,P) will be the Wiener space, B : Ω × R+ will be the
Brownian motion Bt(ω) = ω(t), and F will be the filtration defined in (1).

Exercise 1.2. Let H denote the set of random variables of the form

F (ω) = f(ω(t1), ..., ω(tn)) = f(Bt1(ω), ..., Btn(ω)

for some 0 ≤ t1 < ... < tn < ∞ and f : Rn → R bounded and measurable. Show that H is
dense in L2(Ω,F).

1.2 Definite Itô Integral

Now we define the integral of a process with respect to B.

Definition 1.3. A process X : Ω × R+ → R is called simple if it takes the form X =∑
iHi1(ti,ti+1](t) for a some 0 = t0 < t1 < ... < tn <∞ and Hi ∈ L2(Ω,Fti).

The integral of a simple process is easy to define, and analogous to the Riemann integral
of a step function.

Definition 1.4. If X =
∑

iHi1(ti,ti+1](t) is simple, then
∫∞

0
XtdBt :=

∑
iHi(Bti+1

− Bti) ∈
L2(Ω) is the Itô integral of X with respect to B.

We now have a well-defined map X 7→
∫∞

0
XtdBt from simple processes into L2(Ω) =

L2(Ω,F). In fact, this map is an isometry.

Proposition 1.5. If X and Y are simple processes, then

〈
∫ ∞

0

XtdBt,

∫ ∞
0

YtdBt〉L2(Ω) = 〈X, Y 〉L2(Ω×R+)
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Exercise 1.6. Prove Proposition 1.5.

Now we want to identify the closure of the set of simple processes in L2(Ω× R+).

Definition 1.7. A processX : Ω×R+ → R is progressively measurable (or progressive) if
for all t, X|Ω×[0,t] is measurable with respect to the σ-algebra Ft⊗B([0, t]). The progressive
σ-algebra, denoted P , is the σ-algebra on Ω× R+ generated by all progressive processes.

Exercise 1.8. Show that

P = σ({A ∈ F ⊗ B([0, T ]) : A ∩ (Ω× [0, t]) ∈ Ft ⊗ B([0, t]) ∀ t}).

We will use L2(P) to denote the space L2(Ω×R+,P), and view it in the natural way as
a closed subspace of L2(Ω× R+) = L2(Ω× R+,F ⊗ B(R+)). Then we have the following:

Proposition 1.9. The closure of the space of simple process in L2(Ω× R+) is L2(P).

Exercise 1.10. The proof of Proposition 1.9 takes some work, but one inclusion is easy.
Which one is it, and why?

In light of Propositions 1.5 and 1.9, the Itô integral on simple processes extends uniquely
to an isometry X 7→

∫∞
0
XsdBs on L2(P), which we will also call the Itô integral. More

precisely, we have:

Definition 1.11. For X ∈ L2(P), the Itô integral of X with respect to B is given
by
∫∞

0
XsdBs := limn→∞

∫∞
0
Xn
s dBs, where the limit is taken in L2(Ω), and {Xn} is any

sequence of simple process approaching X in L2(Ω× R+).

For T <∞ we define
∫ T

0
XtdBt :=

∫∞
0
Xt1[0,t]dBt.

Example 1.12. We can prove directly from the definitions that
∫ t

0
sdBs = tBt −

∫ t
0
Bsds.

Indeed, for a partition ∆ = (t0, ..., tn) with 0 = t0 < ... < tn = t, let h∆(t) be the step
function

h∆ =
∑
i

ti1[ti,ti+1).

Then h∆(s)→ s in L2([0, t]) as ||∆|| → 0, so by the definition of the Itô integral,
∫ t

0
sdBs is

the L2 limit of the random variables∫ t

0

h(s)dBs =
∑
i

ti(Bti+1
−Bti)

as the mesh of ∆ tends to zero. We have∑
i

ti(Bti+1
−Bti) =

∑
i

tiBti+1
−
∑
i

ti+1Bti+1
+
∑
i

ti+1Bti+1
−
∑
i

tiBti

= tBt −
∑
i

Bti+1
(ti+1 − ti).

Thus the proof is complete if we can show that
∑

iBti+1
(ti+1−ti)→

∫ t
0
Bsds in L2, as ||∆|| →

0 but this follows from the dominated convergence theorem, because clearly
∑

iBti+1
(ti+1 −

ti)→
∫ t

0
Bsds almost surely, and the sequence is dominated by t sup0≤s≤t |Bs| ∈ L2.
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1.3 Indefinite Itô Integral

LetM2 be the be the space of continuous, square integrable martingales M = (Mt)t≥0 such
that supt E[|Mt|2] < ∞. The martingale convergence theorem shows that if M ∈ M2, then
there exists M∞ ∈ L2(Ω,F∞) such that Mt → M∞ a.s. and in L2. Furthermore, Doob’s
maximal inequality shows that M2 is a Hilbert space under the inner product 〈M,N〉M2 =
E[M∞N∞]. We will now use this Hilbert space structure to define the indefinite Itô integral.

Definition 1.13. If X =
∑

iGi1(ti,ti+1] is a simple process, then the indefinite integral of
X with respect to B is the process

(t, ω) 7→
∫ t

0

XsdBs(ω) :=
∑
i

Gi(ω)(Bti+1∧t(ω)−Bti∧t(ω)).

We will often denote the indefinite integral by
∫
XsdBs. Just as with the definite integral,

we have an isometry property:

Proposition 1.14. If X simple, then
∫
XsdBs is a continuous square integrable martingale.

For X, Y simple,

〈
∫
XdB,

∫
Y dB〉M2 = 〈X, Y 〉L2(Ω×R+).

As in the definite case, this allows us to define an isometry X 7→
∫
XdBs from L2(P) to

M2.

Definition 1.15. For X ∈ L2(P),
∫
XdB = limn→∞

∫
XndB, where the limit is taken in

M2 and Xn is any sequence of simple processes approaching X in L2(Ω× R+).

Exercise 1.16. Review Doob’s Lp maximal inequality (if you need to), and use it to give a
proof that M2 is complete.

We define H := L2(R+). If we restrict to deterministic integrands, the definite Itô integral
gives an isometry H → L2(Ω), h 7→ B(h) :=

∫∞
0
h(t)dBt. In fact, the image of the map

B : H → L2(Ω) contains only Gaussian random variables.

Proposition 1.17. If h ∈ H, the continuous martingale
∫
hdB is a Gaussian process;

that is, for any 0 ≤ t1, ..., tn ≤ ∞, the random vector (
∫ t1

0
h(t)dBt, ...,

∫ tn
0
h(t)dBt) is a

multivariate Gaussian. In particular, B(h) is a Gaussian random variable.

The map B can be viewed as a special case of something called Gaussian white noise,
and is a basic building block of Malliavin calculus.

1.4 Stratonovich Integral

For most of these notes we will use the Itô integral, but it will be helpful when stating
Hörmander’s theorem to also have the Stratonovich formulation of SDEs at our disposal.
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This section is a very short and very informal introduction to the Stratonovich integral. One
can show that for a sufficiently nice integrand X ∈ L2(P), the Itô integral of X is given by∫ T

0

XtdBt = lim
n→∞

∑
i

Xtni
(Btni+1

−Btni
),

where the limit is taken in L2, ∆n = {tn1 , ..., tnkn} is a partition of [0, T ] and the mesh of ∆n

tends to zero.
Interestingly, the choice to approximate X using left-endpoints matters. If instead we

use the midpoint, we get the Stratonovich integral, which for sufficently nice X is given
by ∫ T

0

X ◦ dBt = lim
n→∞

∑
i

(Xtni
+Xtni+1

2

)
(Btni+1

−Btni
).

It turns out that the Itô and Stratonovich integrals are related by the formula

∫ T

0

Xt ◦ dBt =

∫ T

0

XtdBt +
1

2
〈X,B〉t.

2 The Malliavin Derivative and its Adjoint

We will now define the Malliavin derivative and its adjoint, the divergence operator. The
constrution is similar to the construction of the derivative operators on Sobolev spaces; first
we define the desired operations on a very nice space, and then we use functional analysis
to extend.

2.1 Definitions

Let C∞p (Rn) to be the set of smooth functions Rn → R all of whose derivatives grow at
most polynomially. We now define S to be the set of random variables of the form F =
f(B(h1), ..., B(hn)), where hi ∈ H and f ∈ C∞p (Rn). Similarly, we define SH to be the set
of process of the form u =

∑n
i=1 Fihi where Fi ∈ S and hi ∈ H. It turns out that S and SH

give the appropriate “nice spaces” on which to initially define our differential operators.

Definition 2.1. For F = f(B(h1), ..., B(hn)) ∈ S, the Malliavin derivative of F is the
process

DtF :=
n∑
i=1

fxi(B(h1), ..., B(hn))hi(t) ∈ L2(Ω× R+).

Definition 2.2. For u =
∑n

i=1 Fiui ∈ SH , the divergence of u, denoted δ(u), is the random
variable

δ(u) :=
n∑
i=1

FiB(hi)−
∑
i

〈DFj, hj〉H ∈ L2(Ω).
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It turns out that the divergence is the adjoint of the derivative.

Proposition 2.3. If F ∈ S and u ∈ SH , then

E[Fδ(u)] = E[〈DF, u〉H ]

This adjointness relationship allows us to prove that the operator D is closeable.

Proposition 2.4. The operator D : S ⊂ L2(Ω)→ L2(Ω× R+) is closeable.

Proof. Suppose that {Fn} ⊂ S with Fn → 0 in L2(Ω) and DFn → u in L2(Ω×R+). To show
that D is closeable, we must show that u = 0. Let v ∈ SH . Then by adjointness, we have

E[〈u, v〉] = lim
n→∞

E[〈DFn, v〉] = lim
n→∞

E[Fnδ(v)] = 0.

Because S is dense in L2(Ω × R+), we conclude that E[〈u, v〉] = 0 for all v ∈ L2(Ω × R+),
and thus u = 0 as required.

Thus there exists a closed extension of D, which we also denote by D, defined on the
space

D1,2 := {F ∈ L2 : there exists Fn ∈ S, u ∈ L2(Ω× R+) with Fn → F,DFn → u}.

Finally, we define δ(u) by extending the adjointess relationship as far as possible.

Definition 2.5. The domain of the divergence operator is given by

Dom(δ) := {u ∈ L2(Ω× R+) : there exists F ∈ D1,2 with E[〈u,DG〉] = E[FG for all G ∈ D1,2},

and for u ∈ Dom(δ), we define δ(u) = F , where F satisfies the above condition.

For u =
∑

i Fihi ∈ SH , ut ∈ S for each t, and so the two-parameter process Du ∈
L2(Ω× R2

+) given by Du(s, t) = Dsut is well-defined, and is given explicitly by

Dsut =
∑
i

DsFihi(t).

Thus, we have a mapping D : SH ⊂ L2(Ω× R+)→ L2(Ω× R2
+). In fact, just as in the case

of D : S → L2(Ω × R+), one can show that this operator is closeable, and so by taking its
closure we get a mapping D1,2(H)→ Lp(Ω× R2

+), where

D1,2(H) := {u ∈ L2(Ω× R+) : there exist un ∈ SH , v ∈ L2(Ω× R2
+) with un → u,Dun → v},

and for u ∈ D1,2(H) we have Dsut = v(s, t) where v is as above.
For simplicity, these notes will mostly be concerned with the spaces D1,2, Dom(δ), and

D1,2(H), but there is a whole family of related spaces. If F = f(B(h1), ..., B(hn)) ∈ S, we
can define iterated derivatives

Dk
t1,...,tk

F =
n∑

i1,...,ik=1

∂kf

∂xi1 , , , xik
(B(h1), ..., B(hn))hi1(t)...hik(t),

and another closeability argument yields an operator Dk : Dk,2 → L2(Ω×Rk
+). One can also

view S as a subset of Lp, and Dk as operator from S → Lp(Ω× Rk
+). Taking the closure of

D in this setting defines a space Dk,p and an operator D : Dk,p → Lp(Ω× Rk
+).

Finally, we define Dk,∞ = ∩p≥1Dk,∞, and D∞ = ∩k≥1Dk,∞.
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Exercise 2.6. Compute the Malliavin derivative of the following random variables:

(a) X =
( ∫ T

0
sin(t)dBt

)2

(b) X = B1B2B3

2.2 Interpreting D and δ

There are three results which I think help provide some intuition about the operators D and
δ. First, we show how to interpret DF as the “gradient” of F .

Definition 2.7. The Cameron-Martin space is the subspace of C(R+;R) given by C =
{g ∈ C(R+;R) : g(t) =

∫ t
0
ġ(s)ds, ġ ∈ H}.

The Cameron-Martin space provides a set of “directions” in which we can differentiate a
random variable F ∈ D1,2. For F ∈ D1,2 and h ∈ H, we define DhF = 〈DF, h〉 ∈ L2(Ω). For
g ∈ C, we define τg : Ω→ Ω by τg(ω) = ω + g. Since τg is continuous, hence measurable on
Ω, F ◦ τg is a well-defined random variable.

Theorem 2.8. If F ∈ D1,2, then for any g ∈ C, we have

lim
ε→0

1

ε

(
F ◦ τεg − F

)
= DġF,

where the limit is taken in probability.

So, to find the “directional derivative of F in the direction of g”, we take the inner
product of DF with ġ. This should be compared with the usual directional derivative of a
map Rn → R.

Exercise 2.9. Prove Theorem 2.8 in the special case that F ∈ S.

Analytically, δ is best understood as the adjoint of D. Since D is like the gradient, this
means δ is like the classical divergence of a vector field. There is another more probabilisitc
interpretation of δ; it can be viewed as an extension of the Itô integral. To prove this, we
need a lemma concerning measurability and D.

Definition 2.10. For 0 ≤ a < b <∞, we define F ba := σ({Bt −Ba : t ∈ [a, b]}).

Intuitively, if a F ∈ F ba, then F depends only on the behavior of the Brownian motion
between a and b. Formally, we have:

Lemma 2.11. If F ∈ D1,2 ∩ F ba, then DF = 0 on Ω× [a, b]c, dP⊗ dt a.s.

In particular, this implies that if F ∈ D1,2 ∩Ft, then DF = 0 on Ω× [t,∞), dP⊗ dt a.s.
Here is the result stating the relationship between δ and the Itô integral.

Proposition 2.12. We have L2(P) ⊂ Dom(δ), and for u ∈ L2(P), δ(u) =
∫∞

0
utdBt.
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Proof. Suppose that first that u =
∑

i Fi1[ti,ti+1) is simple. Then u ∈ SH , and by definition

δ(u) =
∑
i

Fi(Bti+1
−Bti)−

∑
i

〈DFi, 1[ti,ti+1)〉.

The second term is zero by lemma 2.11 because Fi ∈ Ft, and thus

δ(u) =
∑
i

Fi(Bti+1
−Bti) =

∫ ∞
0

utdBt.

The general case follows from approximation.

By the martingale representation theorem, any random variable F ∈ L2(Ω) can be ex-
pressed as F = E[F ]+

∫∞
0
ZsdBs. We now prove the Clark-Ocone formula, which shows that

if F ∈ D1,2, then in fact we can choose Z to be the optional projection of DF .

Theorem 2.13. (Clark-Ocone Formula) If F ∈ D1,2, then

F = E[F ] +

∫ ∞
0

E[Dt|Ft]dBt.

Proof. We know that F = E[F ] +
∫∞

0
ZsdBs for some Z ∈ L2(P), so we need only show that

(Zt)t and (E[Dt|Ft])t are equal as elments of L2(P). For u ∈ L2(P), we have

E[〈Z, u〉] = E[(F − E[F ])
( ∫ ∞

0

usdBs

)
] = E[(F − E[F ])δ(u)] = E[〈DF, u〉]

=

∫ ∞
0

E[DtFut]dt =

∫ ∞
0

E[E[DtF |Ft]ut]dt = E[〈E[DtF |Ft], u〉],

which completes the proof.

2.3 Some Tools

Here are some of the main tools for computing and/or estimating Malliavin derivatives. We
start with the chain rule:

Proposition 2.14. Let φ ∈ C1(R) with bounded derivative, and F ∈ D1,2. Then φ(F ) ∈
D1,2, and Dφ(F ) = φ′(F )DF .

Proof. First, suppose that F = f(B(h1), ..., B(hn)) ∈ S. Then φ(F ) = φ◦f(B(h1), ..., B(hn)) ∈
S, and we can explicitly compute

Dt(φ(F )) =
∑
i

(φ ◦ f)xi(B(h1), ..., B(hn))hi(t)

=
∑
i

φ′(f(B(h1), ..., B(hn))fxi(B(h1), ..., B(hn)) = φ′(F )DtF.

Thus the result holds for F ∈ S. For F ∈ D1,2, we can find a sequence {Fj} ⊂ S, such that
Fj → F in L2(Ω), DFj → DF in L2(Ω × R+). Since φ is Lipschitz and Fn → F , φ(Fn) →
φ(F ) in L2(Ω). Furthermore, along a subsequence we have Fn → F , and DFn → DF , and
so by the dominated convergence theorem Dφ(Fn) = φ′(Fn)DFn → φ′(F )DF . The result
now follows from the closedness of D.
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A mollification argument lets us extend the chain rule to Lipschitz functions.

Proposition 2.15. Let φ : R → R be Lipschitz, i.e. |φ(x) − φ(y)| ≤ K|x − y| for some
K. Let F ∈ D1,2. Then F (φ) ∈ D1,2, and DF = GDF for some random variable G with
||G||L∞ ≤ K. If the law of F is absolutely continuous with respect to the Lebesgue measure,
then G = φ

′
(F ), where φ

′
is the weak derivative of φ.

Exercise 2.16. Compute the derivative of X = sup0≤t≤1Bt by approximating X by random
variables of the formXn = max{Bt1 , ..., Btn}, and using the chain rule for Lipschitz functions.

Next, we show how to compute derivatives of Lebesgue integrals.

Proposition 2.17. Let u ∈ D1,2(H), and T > 0. Then
∫ T

0
utdt ∈ D1,2, and a version of

D(
∫ T

0
utdt

)
is given by

Ds

( ∫ T

0

utdt
)

=

∫ T

0

Dsutdt.

Proof. Suppose first that u =
∑n

i=1 Fihi ∈ SH . Then∫ T

0

utdt =
n∑
i=1

(

∫ T

0

hi(t)dt)Fi ∈ S,

and so

Ds

( ∫ T

0

utdt
)

=
n∑
i=1

(

∫ T

0

hi(t)dt)DsFi =

∫ T

0

Ds

(∑
i

hi(t)Fi
)
dt =

∫ T

0

Dsutdt.

Now for u ∈ D1,2(H), there is a sequence un ∈ SH with un → u in L2(Ω×R+) and Dun → Du

in L2(Ω,R2
+). It is easy to check that

∫ T
0
unt dt→

∫ T
0
utdt in L2(Ω) and (ω, s) 7→

∫ T
0
Dsu

n
t dt(ω)

converges to (ω, s) 7→
∫ T

0
Dsutdt(ω) in L2(Ω × R+). This lets us pass to the limit in the

equation

Ds

( ∫ T

0

unt dt
)

=

∫ T

0

Dsutdt

to get the result.

We can also differentiate integrals against Brownian motion. We need the following
lemma regarding the divergence:

Lemma 2.18. If u, v ∈ D1,2(H), then

E[δ(u)δ(v)] = E[

∫ ∞
0

∫ ∞
0

DsutDtvsdsdt].
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Proposition 2.19. Let u ∈ D1,2 ∩ L2(P). Then
∫ T

0
utdBt ∈ D1,2, and a version of Du is

given by

Ds(

∫ T

0

utdBt) =

{
us +

∫ T
s
DsutdBt s ≤ T

0 s > T.

Note that it is not obvious that the process (s, ω) 7→
∫ T
s
utdBt(ω) defines an element on

L2(Ω × R+), but this can be remedied by choosing a sufficiently nice version of Du. We
will ignore any measure-theoretic difficulties, and simply assume that we can choose a verion
of Du such that Dsu· ∈ L2(P) for each s (and thus

∫ T
s
DsutdBT makes sense as a random

variable), and also that these random variables can be chosen so that (s, ω) 7→
∫ T
s
DsutdBt(ω)

is measurable. Under this assumption the statement makes sense, and we can give a simple
proof.

Proof. Without loss of generality, we can assume ut = 0 for t > T . For v ∈ D1,2(H), we use
Lemma 2.18 and the Clark-Ocone formula to compute

E[〈D(

∫ T

0

usdBs), v〉] = E[
( ∫ T

0

usdBs

)
δ(v)] = E[δ(u)δ(v)]

= E[

∫ ∞
0

utvtdt] + E[

∫ ∞
0

∫ ∞
0

DsutDtvsdtds]

= E[〈u, v〉] +

∫ ∞
0

E[
( ∫ ∞

0

DsutdBt

)( ∫ ∞
0

DtvsdBt

)
]ds

= E[〈u, v〉] +

∫ ∞
0

E[
( ∫ ∞

0

DsutdBt

)
vsds

= E[〈u, v〉] + E[〈
∫ T

·
D·utdBt, v〉],

from which the result follows.

3 Stochastic Differential Equations

In this section, we fix a time horizon T , and we consider the SDE{
dXt = b(Xt)dt+ σ(Xt)dBt 0 ≤ t ≤ T,

X0 = x0.
(2)

The equivalent integral formulation is

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs, 0 ≤ t ≤ T. (3)

Here B is a d-dimensional Brownian motion, X is n-dimensional, x0 ∈ Rn, and b : Rn →
Rn, σ : Rn → Rn×d are both uniformly Lipschitz, i.e. |b(x)− b(y)|+ |σ(x)−σ(y)| ≤ L|x−y|.
A solution to (2) is a progressive process X such that b(Xt) ∈ L1,loc, σ(Xt) ∈ L2,loc, and (3)
holds for all t, almost surely.
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Example 3.1. The Ornstein Uhlenbeck SDE is given by{
dXt = bXtdt+ σdBt

X0 = x0,

and Itô’s formula shows that an explicit solution is given by

Xt = ebtx0 + σ

∫ t

0

eb(t−s)dBs.

Exercise 3.2. Assume that X and B are one-dimensional, so b, σ : R → R. Find b̃ and
σ̃ : R→ R (in terms of b and σ) so that the Stratonovich SDE{

dXt = b̃(Xt)dt+ σ̃(Xt) ◦ dBt 0 ≤ t ≤ T,

X0 = x0.

is equivalent to the Itô SDE (2).

3.1 Existence and Uniqueness

We introduce the space of processes

S2 := {X : Ω× [0, T ]→ R : X is progressive , X· is continuous a.s., and ||X||2S2 := E[ sup
0≤t≤T

|Xt|2] <∞}.

It turns out that S2 is the right regularity class for solutions of (2).
We recall a couple of important inequalities, namely Gronwall’s inequality (in integral

form) and the Burkholder-Davis-Gundy (BDG) inequality.

Proposition 3.3. (Gronwall’s Inequality) If u : [0, T ] → R is a continuous function that
satisfies u(t) ≤ α +

∫ t
0
β(s)u(s)ds, then

u(t) ≤ α exp(

∫ t

0

β(s)ds).

Proposition 3.4. (BDG Inequality) There are constants cp, Cp such that for any continuous
local martingale M starting at zero, any stopping time τ and 1 ≤ p <∞

cpE[〈Mτ 〉p/2] ≤ E[ sup
0≤t≤τ

|Mt|p] ≤ CpE[〈Mτ 〉p/2]

Exercise 3.5. Use the BDG inequality to show that if X ∈ L∞ ∩L2(P), then M =
∫
XdB

satisfies sup0≤t≤T |Mt|p ∈ Lp(Ω) for all 0 ≤ T <∞ and 1 ≤ p <∞.

Exercise 3.6. Give examples showing that neither inequality in Proposition 3.4 holds when
p =∞.

Example 3.7. If B is a standard Brownian motion then 〈B〉T = T , so the BDG inequality
immediately gives that sup0≤t≤T |Bt| ∈ Lp for all 0 ≤ T <∞ and all 1 ≤ p <∞.
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We now give an estimate which will imply uniquenes.

Proposition 3.8. There is a constant C depending on T, L, d, and n such that if X i ∈ S2

solves {
dXj

t = b(Xj
t )dt+ σ(Xj

t ) · dBt

Xj
0 = xj,

j = 1, 2, and ∆X = X1 = X2, then E[sup0≤t≤T |∆Xt|2] ≤ C|x1 − x2|2.

Proof. For notational convenience, we assume that X and B are one-dimensional, so n =
d = 1 and b, σ : R→ R. We allow C to vary from line to line, so long as it depends only on
T and L (and implicitly on d and n). We define ∆Xt = X1

t −X2
t , and note that

∆Xt = x1 − x2 +

∫ t

0

b(X1
s )− b(X2

s )ds+

∫ t

0

σ(X1
s )− σ(X2

s , s)dBs,

from which it follows that

|∆Xt|2 ≤ C
(
|x1 − x2|2 +

∫ t

0

|b(X1
s )− b(Xs)|2ds+ |

∫ t

0

σ(X1
s )− σ(X2

s )dBs|2
)
.

Thus

sup
0≤r≤t

|∆Xr|2 ≤ C
(
|x1 − x2|2 +

∫ t

0

|b(X1
s )− b(X2

s )|2ds+ sup
0≤r≤t

|
∫ t

0

σ(X1
s )− σ(X2

s )dBs|2
)
.

Applying the Burkholder-Davis-Gundy inequality and the Lipschitz assumption on b and σ
shows that

E[ sup
0≤r≤t

|∆Xr|2] ≤ C
(
|x1 − x2|2 +

∫ t

0

E[∆X2
s ]ds

)
≤ C

(
|x1 − x2|2 +

∫ t

0

E[ sup
0≤r≤s

∆X2
r ]ds

)
.

and finally Gronwall’s inequality applied to the function t 7→ E[sup0≤r≤t |∆Xr|2 shows that

E[ sup
0≤t≤T

|∆Xt|2] ≤ C|x1 − x2|2.

Theorem 3.9. There exists a unique process X ∈ S2 which solves (2).

Proof. Uniqueness is given by Propositiono 3.8. We present only a sketch of the proof of
existence, since it just a (slightly fancier) version of the Picard iteration proof for existence
for ODEs with Lipschitz coefficients. Define processes Xn, n ≥ 0 by

X0
t = x0

Xn+1
t = x0 +

∫ t

0

b(Xn
s )ds+

∫ t

0

σ(Xn
s )dBs.

Then one can use the Lipschitz assumption to show that the sequence {Xn} is Cauchy in
S2, and hence as a limit X. Passing to the limit in (3) shows that in fact X is the desired
solution.
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One can show using a the Burkholder-Davis-Gundy inequality that any solution to (2)

which is square integrable (i.e. E[
∫ T

0
|Xs|2ds] < ∞) is automatically in S2, and use this to

give a stronger version of the uniqueness in the preceding proposition.

3.2 The Derivative of an SDE Solution

If the coefficients of (2) are very regular, we expect the solutions to also be very regular. The
proof of this is difficult, and we won’t cover it, but we can at least give a precise statement:

Proposition 3.10. Suppose that σ and b are C∞ with bounded derivatives of all orders, and
let X be the unique solution of (2). Then for each 0 ≤ t ≤ T , Xt ∈ D∞.

Assume for the moment that X and B are one-dimensional. One can show that X ∈
D1,2(H), and thus the same is true of b(X) and σ(X), so we can apply Propositions 2.17 and
2.19 to compute

DsXt = Ds

( ∫ t

0

b(Xr)dr
)

+Ds

( ∫ t

0

σ(Xr)dBr

)
= σ(Xs) +

∫ t

s

Ds(b(Xr))dr +

∫ t

s

Ds(σ(Xr))dBr

= σ(Xs) +

∫ t

s

b
′
(Xr)DsXrdr +

∫ t

s

σ
′
(Xr)DsXrdBr, (4)

for s ≤ t. Of course, we could do the same thing if n and d are not one, it just comes out a
little messier. For fixed s, (4) says that the process DsX· solves a linear SDE with random
coefficients on [s, T ]. More rigorously, for any version of DX, we have that for almost every
s, the process (DsXt)s≤t≤T is a version of Y , where Y solves the SDE

Yt = σ(Xs) +

∫ t

s

b
′
(Xr)Yrdr +

∫ t

s

σ′(Xr)YrdBr. (5)

Thus a-priori estimates for the equation (5) yield estimates on the derivative of X. This idea
of differentiating an SDE to get a new SDE is very useful.

Exercise 3.11. Solve in closed form the SDE

dXt = µXtdt+ σXtdBt

X0 = x0,

where µ, σ, x0 ∈ R, and verify (4) in this case.

Exercise 3.12. For fixed t > 0 show that F 7→ E[F |Ft] is a contraction on D1,2. Conclude
that if M is a square integrable martingale with MT ∈ D1,2 for some T , then Mt ∈ D1,2 for
all 0 ≤ t ≤ T .
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3.3 Cauchy Problem and SDEs

Recall the SDE (2). For convenience, here it is again:{
dXt = b(Xt)dt+ σ(Xt)dBt 0 ≤ t ≤ T

X0 = x0.

Let a = σσT : Rn → Rn×n, and consider the differential operator L given by

Lf(x) =
n∑
i=1

bi(x)∂if(x) +
1

2

n∑
i,j=1

aij(x)∂ijf(x). (6)

The basic connection between the operator L and the SDE (2) is that for f ∈ C2,

df(Xt) = Lf(Xt)dt+ dMt,

where M is a martingale. This follows immediately from Itô ’s Lemma. Consider the
following Cauchy problem:{

ut(t, x) = Lu(t, x) (t, x) ∈ (0,∞)× Rn

u(0, x) = f(x).
(7)

Here u : R+×Rn → R is the unkown, and for simplicity we assume f ∈ Cc(Rn). For x ∈ Rn

Xx
t denote the unique solution to (2) with initial condition x0 = x. We now show how to

represent solutions to (7) using solutions to (2). Then we have

Proposition 3.13. If u ∈ C1,2(R+ × Rd) solves (7) and u is bounded, then u(t, x) =
E[f(Xx

t )].

Proof. For fixed t0, consider the process u(Xt, t0 − t). Itô ’s lemma shows that

du(Xt, t0 − t) = Lu(Xt, t0 − t)dt− ut(Xt, t0 − t)dt+ dMt = dMt,

where Mt is a local martingale. Since u is bounded by assumption, u(Xt, t0− t) is a martin-
gale, and thus

u(x, t0) = E[u(Xx
0 , t0 − 0)] = E[u(Xt0 , 0)] = E[f(Xt0)].

Example 3.14. If L = 1
2
∆, the corresponding SDE is dXt = dBt, and so the solution to (7)

is given by u(t, x) = E[f(Bt + x)].

Exercise 3.15. Suppose that b and σ are bounded (and Lipschitz), and that Xx
t denotes

the unique solution to (2) with initial condition x. Show that if f ∈ C2(Rd) is bounded with
bounded first and second order derivatives, then we have

lim
t↓0

1

t

(
E[f(Xx

t )]− f(x)
)

= Lf(x).

For those familiar with semigroups, this shows that L is the generator of the semigroup T
given by T (t)f(x) = E[f(Xx

t )].
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4 Malliavin Calculus and Densities

One of the primary applications of Malliavin calculus is to the study of densities. The most
powerful results about densities, which will be necessary for Hörmander’s Theorem, are too
involved to prove in a week long course. But I’d still like to show how Malliavin calculus can
be used to prove things about densities, so I will prove some simple results in 1-D, and then
state without proof the main result about random vectors which is required for Hörmander’s
theorem.

First, let’s recall what we mean by the density of random variable. For a random vector
X in Rn, its density is the measure µX on Rn given by

µX(A) = P[X ∈ A] = P[X−1(A)], A ∈ B(Rn).

Recall that X is called continuous if the measure µX is absolutely continuous with respect
to the Lebesgue measure, in which case the probability density function (pdf) of X is
the Radon Nikodym derivative fX = dµX

dλ
, where λ is the Lebesgue measure on Rn. When

I say that Malliavin calculus can be used to study densities, what I mean is that we can
use Malliavin calculus to describe conditions under which the random vector X has a nice
density.

Remember that the Malliavin derivative is interpreted as a gradient. To give some intu-
ition about how gradients relate to densities, here is a problem:

Exercise 4.1. Suppose f : Rn → R is smooth, and ∇f > 0. Then if λ denotes the Lebesgue
measure on Rn, the push-forward measure µ defined by µ(A) = λ(f−1(A)) is atomless, i.e.
µ({x}) = 0 for all x ∈ R. Is µ absolutely continuous with respect to the Lebesgue measure
on R? Is there an analogous condition for a map f : Rn → Rm?

4.1 Some Results in 1-D.

We start with a lemma about indicator functions.

Lemma 4.2. Let A ∈ F . Then 1A ∈ D1,2 if and only if P[A] is zero or one.

Proof. If P[A] is zero or one, then 1A is an a.s. constant random variable, hence in D1,2. For
the other direction, suppose that 1A ∈ D1,2. Let φ : R → R be smooth, with φ(x) = x2 for
all x ∈ [0, 1]. Then φ(1A) = 1A, and by the chain rule

D1A = Dφ(1A) = φ′(1A)D1A = 21AD1A.

In particular, this implies that D1A = 0, so 1A must be (a.s.) equal to a constant. It follows
that either P[A] = 1 or P[A] = 0.

We now apply this to give our first result about distributions.

Proposition 4.3. If X ∈ D1,2, then supp(µX) is a closed interval.
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Proof. Since supp(µX) is always a closed subset of R, it suffices to show that supp(µX) is
connected. Suppose towards a contradiction that supp(µX) is not connected. Then we can
find a < b such that P[X < a] > 0, P[X > b] > 0, and P[a ≤ X ≤ b] = 0. Let φ ∈ C∞c (R)
be such that φ = 0 on (−∞, a], and φ = 1 on [b,∞). Then since X ∈ D1,2, so is φ(X).
But φ(X) = 1X≥b, and 0 < P[X ≥ b] < 1. This contradicts Lemma 4.2, and completes the
proof.

Now we state a simple criterion for the existence of a density.

Proposition 4.4. Let X ∈ D1,2, and suppose that ||DX||H > 0 a.s. Then µX is absolutely
continuous with respect to the Lebesgue measure.

In fact, with a little more information about DX, we can get an explicit formula for the
density.

Proposition 4.5. Let X ∈ D1,2, and suppose that ||DX||H > 0 a.s., and also DX
||DX||2H

∈
Dom(δ). Then X has a continuous and bounded density fX given by

fX(x) = E[1{X>x}δ
( DX

||DX||2H

)
]. (8)

Proof. It suffices to show that for a < b, we have P[a ≤ X ≤ b] =
∫ b
a
fX(x)dx. We use

adjointness and the chain rule to compute∫ b

a

fX(x)dx =

∫ b

a

E[1{X>x}δ
( DX

||DX||2H

)
]dx

= E[
(∫ b

a

E[1{X>x}]dx
)
δ
( DX

||DX||2H

)
]

= E[(a ∨X ∧ b− a)δ
( DX

||DX||2H

)
]

= E[〈D(a ∨X ∧ b− a)
DX

||DX||2H
〉H ]

= E[1[a,b](X)〈DX, DX

||DX||2H
〉H ]

= E[1[a,b](X)] = P[a ≤ X ≤ b].

Example 4.6. If X = B1, then DX = 1[0,1], and so applying Proposition 4.5 shows that
the density f of B1 satisfies f(x) = E[1B1>xB1].

Exercise 4.7. Verify (8) in the case that X = B(h) for some h ∈ H.
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4.2 Main Criteria for the Existence of Smooth Densities

Let X = (X1, ..., Xn) be a random vector in (D1,2)n. The Malliavin matrix of F is the
random n× n matrix γX given by

(γX)ij = 〈DXi, DXj〉H .

Roughly speaking, the random variable det(γX) plays the same role for random vectors as
||DX||H does for random variables.

Definition 4.8. A random vector X = (X1, ..., Xn) is called non-degenerate if Xi ∈ D1,2,
and

E[(det(γX))−p] <∞]

for all p ≥ 2.

The main result concerning existence and smoothness of densities is the following.

Theorem 4.9. Let X = (X1, ..., Xn) be a non-degenerate random vector such that Xi ∈ D∞
for each i. Then X has an infinitely differentiable density.

5 Hörmander’s Theorem

Recall the Cauchy problem (7) from section 3.3. When L = ∆, (7) reduces to the heat
equation {

∂tu(t, x) = ∆u(t, x) (t, x) ∈ (0,∞)× Rn

u(0, x) = f(x),

and it is well know that the unique solution is given by

u(t, x) =

∫
Rn

p(t, x, y)f(y)dy,

where p is the fundamental solution

p(t, x, y) = (4πt)−n/2e−|x−y|
2/4t.

In fact, it is a classical result that the same thing works when L is uniformly elliptic.
That is, if L is uniformly elliptic, we can represent the unique solution to (7) as u(t, x) =∫
Rn p(t, x, y)f(y)dy for some fundamental solution p such that p(t, ·, ·) : R2n → R is smooth

for each t. Hörmander’s Theorem says that this is possible for a much larger class of opera-
tors.
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5.1 Statement of the Theorem

First, we formulate Hörmander’s bracket condition. Let σi be a vector field on Rn, for
0 ≤ i ≤ d. We define

V0 = {σi : 1 ≤ i ≤ d},
Vk = {[v, σi] : v ∈ Vk−1, 0 ≤ i ≤ d} for 1 ≤ k ≤ d.

Finally we define V = ∪dk=0Vk. We say that {σi}di=1 satisfies Hörmander’s condition if at
each point x ∈ Rn, {v(x) : v ∈ V } spans Rn.

Exercise 5.1. If σ0, σ1 : R → R are viewed as one-dimensional vector fields, what does it
mean for {σ0, σ1} to satisfy Hörmander’s condition?

Next, for vector fields b, σj, 1 ≤ j ≤ d, we define the operator

L =
n∑
i=1

bi∂i +
1

2

n∑
i,j=1

(σσT )ij∂ij.

As we saw in Setion 3.3, the operator L is related to the SDE

dXt = b(Xt)dt+ σ(Xt)dBt. (9)

Next, we define σ0 to be the unique vector field such that (9) is equivalent to the Stratonovich
SDE

dXt = σ0(Xt)dt+ σ(Xt) ◦ dBt. (10)

It is a good exercise to find a formula for σ0 in terms of b and σ, but not important for our
understanding of the theorem.

To summarize, we started with vector fields b, σj, 1 ≤ j ≤ d, and defined from them an
operator L, as well as a new vector field σ0. These objects are related by the connection
between L and the Itô SDE (9), and the equivalence between the Itô SDE (9) and the
Stratonovich SDE (10). With all this in place, we can now state Hörmander’s theorem.

Theorem 5.2. (Hörmander’s Theorem) Suppose that b and σj, 1 ≤ j ≤ d are smooth
vector fields with bounded derivatives of all orders, and that {σj}0≤j≤d satifies Hörmander’s
condition. Then the Cauchy problem (7) has a fundamental soultion p = p(t, x, y) such that
p(t, ·, ·) is smooth for each t.

There is also a probabilistic statement of Hörmander’s Theorem.

Theorem 5.3. (Probabilistic Hörmander’s Theorem) Suppose that σ0, ..., σd are smooth vec-
tor fields with bounded derivatives of all orders, and that {σj}0≤j≤d satisfy Hörmander’s
condition. Let Xx

t be the unique solution to the Stratonovich SDE (10). Then for each t and
x, Xx

t has a smooth density
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Let Xx
t denote the unique solution to (9) with X0 = x. Note that by Proposition 3.13, if

Xx
t has a density gx,t, then the solution u to (7) is given by

u(x, t) = E[f(Xx
t )] =

∫
Rn

f(y)gx,t(y)dy.

Thus, if a smooth fundamental solution exists, we expect Xx
t to have a smooth density for

each x and t, and p(t, x, y) = gx,t(y), where gx,t is the density of Xx
t . Thus it is not surprising

that Theorem 5.1 and 5.2 are in fact equivalent. It is Theorem 5.2 that can be approached
via Malliavin calculus. In fact, by Proposition 3.10 and Theorem 4.9, it suffices to show that
under Hörmander’s condition, the random vector Xt is non-degenerate for each t. We won’t
get to a proof of this fact, but hopefully it is at least clear how Malliavin calculus can help.
In the next (and final) section, we will explain why Hörmander’s condition is natural.

5.2 Intuition about Hörmander’s Condition

In this section, we try to build some intuition about Hörmander’s Condition. At this point,
you are probably wondering - why the Lie brackets? Often when Lie brackets come up, the
Frobenius integrability theorem is involved. We recall the notion of a smooth distribution
(on Rn).

Definition 5.4. A distribution on Rn of order k is a smooth map V , written x 7→ Vx,
which assigns to each x ∈ Rn a dimension k linear subspace of Rn.

The right notion of smoothness is a bit subtle, but hopefully the idea is clear. Here are
a few more definitions about distributions:

Definition 5.5. A distribution V is involutive if whenever u, v : Rn → Rn are vector fields
with u(x), v(x) ∈ Vx for all x, we have [u, v](x) ∈ Vx for all x.

Definition 5.6. A distribution V is integrable if in a neighborhood of each point, there
are coordinates y1, ..., yn such that Vx = span( ∂

∂y1
, ..., ∂

∂yk
).

Now we state (a restricted version of) the Frobenius Integrability Theorem.

Theorem 5.7. (Frobenius Integrability Theorem) A distibution V is integrable if and only
if it is involutive.

This theorem shows one way in which the Lie bracket (which at first seems to be a purely
algebraic gadget) encodes geometric information.

Next, we state the Stroock-Varadhan Support Theorem, which helps explain why Hörmander’s
condition is more naturally stated in terms of Stratonovich SDEs. Let X denote the unique
solution to the Stratonovich SDE{

dXt = σ0(Xt)dt+ σ(Xt) ◦ dBt,

X0 = x0.
(11)

We can view X as a measurable map X : Ω→ C([0, T ];Rn). The Stroock-Varadhan Support
Theorem gives a precise and geometrically natural characterization of the support of the law
of X. We define the (multi-dimensional) Cameron-Martin space C = {g ∈ C(R+;Rd) :
g(t) =

∫ t
0
ġ(s)ds, ġ ∈ Hd}.
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Theorem 5.8. (Stroock-Varadhan Support Theorem) Let X be the solution to (11). For
g ∈ C, let S(g) = x ∈ C([0, T ];Rn), where x is the solution to the ODE{

dx(t) = σ0(x(t)) + σ(x(t))ġ(t)dt

x(0) = x0

Then for any 0 ≤ α < 1
2
, the support of the measure P ◦ X−1 is the closure in Cα of

{S(g) : g ∈ C}.

So, we replace the Brownian motion in (11) with certain deterministic paths, solve all
the corresponding ODEs, and then take the closure in an appropriate norm. In particular,
this can be used to show that if there is a submanifold M of Rn such that x0 ∈ M and
span({σi(x) : 0 ≤ i ≤ d}) ⊂ TxM for each x ∈M , then we must have Xt ∈M a.s., for each
t.

We are now ready to understand why Hörmander’s condition is natural geometrically.
Let {σi} be as before, and define vector fields on Rn+1 by

σ̃0(x, t) =

[
σ0(x)

1

]
, σ̃i(x, t) =

[
σi(x)

0

]
, 0 < i ≤ d.

Then let

Ṽ0 = {σi : 0 ≤ i ≤ d},
Ṽk = {[v, σi] : v ∈ Vk−1, 0 ≤ i ≤ d} for 1 ≤ k ≤ d,

and define Ṽ = ∪kṼk. So the Ṽk’s are formed from the σ̃i’s in the same way that the
Vk’s are formed from the σk’s, except that σ0 ∈ V0. Then one can show that Hörmander’s
condition is equivalent to having {v(x, t) : v ∈ Ṽ } span Rn+1 for all (x, t). Suppose this
condition fails. In fact, for simplicity, suppose that it fails everywhere, and that the map
(x, t) 7→ Ṽ(x,t) := span({v(x, t) : v ∈ Ṽ ) defines a dimension k distribution for some k < n+1.

One can show that (x, t) 7→ Ṽ(x,t) has to be involutive, and hence integrable by Frobenius.

Thus there is a dimension k submanifold of Rn+1 containing (0, x0), and such that Ṽ(x,t) =

T(x,t)M̃ . In particular, σ̃i(x, t) ∈ T(x,t)M̃ for all i and for all (x, t) ∈ M . But the process is
(Xt, t)t is the unique solution to the SDE

dX̃t = σ̃0(X̃t)dt+ σ̃0(X̃t) ◦ dBt

X0 = (x0, 0)

Thus by the Strook-Varadhan support theorem, we see that (Xt, t) ∈ M̃ a.s., at least until
(Xt, t) exits some neighborhood U of (x0, 0). Choosing some small t0, a transversality ar-
gument shows that M := M̃ ∩ {t0} is a dimension k − 1 submanifold of Rn, and clearly we
must have Xt0 ∈M a.s. on the event that (Xt0 , t0) ∈ U . In particular, as long as t0 is small
enough, we have that P[Xt0 ∈ M ] > 0. But as a submanifold of positive co-dimension, M
has Lebesgue measure 0 in Rn, so this shows that Xt0 is not a.c. with respcet to the Lebesgue
measure. Hopefully this is a convincing heuristic argument that Hörmander’s condition is a
geometrically natural generalization of ellipticity.
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